skip to main content


Search for: All records

Creators/Authors contains: "Jamshidi, Reihaneh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The paper discusses how multiphysics simulations and applications are being used to build essential skills in preparation for entry into an Industry 4.0 workforce. In a highly networked and collaborative human/machine cyberspace, some important competencies for engineering graduates include the ability to: (1) explore design options and results easily between suites of software, (2) predict and visualize performance of complex problems in the beginning phase of the design process, and (3) identify and optimize key parameters prior to fabrication. We describe how integrated project- and inquiry-based learning in the context of a simulation environment and across the curriculum is improving student readiness and transition into industry. Our paper offers a template of how to transition into a curriculum that produces newly minted engineers better equipped to engage in complex design. Examples of project assignments, assessment methods, and student work are discussed as well as future plans.

     
    more » « less
  2. Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively. 
    more » « less